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What is a language model?

A language model is a probability distribution over 
sequences of  words 

More formally, given a sequence of  words 
, it computes the probability 

distribution of  the next word : 
 

Joint distribution of  a sequence by chain rule: 

x(1), x(2), ⋯, x(t)

x(t+1)

P(x(t+1) |x(t), ⋯, x(1))

P(x(1), ⋯, x(t)) = P(x(1))P(x(2) |x(1))⋯P(x(t) |x(t−1), ⋯, x(1))



What is a language model?

A language model predicts a word in a context: 

A key part of  decoding tasks: speech recognition, spelling 
correction, and language generation tasks: machine translation, 
summarization, story generation
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What language models can do?

https://platform.openai.com/examples


https://platform.openai.com/examples


Language modeling history



N-gram models
An n-gram is a sequence of  n words in a sentence 

Use the previous n-1 words in a sequence to predict the next 
word 

How? Count how often words follow word sequences in a 
training corpus; divide to get cond. prob. 

The big red dog 

Unigrams:	  P(dog)                  Bigrams:	 P(dog|red) 

Trigrams:	   P(dog|big red)    Four-grams: P(dog|the big red)



A Bigram Grammar Fragment
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A Bigram Grammar Fragment
P(I want to eat British food) = P(I|<start>) P(want|I) P(to|want) 
P(eat|to) P(British|eat) P(food|British) = .25*.32*.65*.26*.001*.60 
= .000080 

P(I want to eat Chinese food) = .00015 

Probabilities seem to capture “syntactic” facts, “world knowledge” 

eat is often followed by a noun phrase 

British food is not too popular 

Limitations: curse of  dimensionality: zillions of  parameters; 
limiting context



Neural language models
A feed-forward neural network was proposed in 2003 by Bengio et al. 

Solve the curse of  dimensionality: dense, low-dimensionality real-
number word vectors 



Recurrent NN-based LMs
Recurrent neural networks RNNs (Mikolov et al., 2010) can memorize the 
previous outputs when receiving the next inputs 



Long Short-Term Memory
Recurrent Neural Networks suffer from short-term memory 

vanishing gradient problem: the gradient shrinks as it back propagates through 
time 

If  a sequence is long enough, it’ll have a hard time carrying information from earlier 
time steps to later ones 

Solution: LSTMs [Zaremba et al. 2014] and Gated Recurrent Units (GRUs) 

they have internal mechanisms called gates to regulate the flow of  information 

these gates can learn which data in a sequence is important to keep or throw away 

GRU is quicker to compute and has fewer parameters than LSTM



Large language models
Large, general-purpose language models, can be 
pre-trained and then fine-tuned for specific 
purposes



How large?
Large number of  parameters             Large training dataset 



How promising?
A single model can be used for different tasks 

The fine-tune process requires minimal field data 

The performance is continuously growing with more data and 
parameters 



What’s the secret sauce?
LLMs are composed of  several key building blocks that enable 
them to efficiently process and understand natural language data



Key components: Tokenization
In order to get our computer to understand any text, we need to 
break that word down in a way that our machine can understand 

Tokenization is a way of  separating a piece of  text into smaller 
units called tokens 

Tokens can be either words, characters, or subwords



Key components: Embedding
Machine learning or deep learning models cannot process text, so 
we need to figure out a way to convert these textual data into 
numerical data 

Every piece of  text turns into a vector (a list) of  numbers



Key components: Positional encoding 

The vectors corresponding to the words “Write”, “a”, “story”, and 
“.” become the modified vectors that carry information about 
their position, labeled “Write (1)”, “a (2)”, “story (3)”, and “. (4)”. 



Transformer architecture
Introduced in the paper 
“Attention Is All You Need” by 
Vaswani et al. in 2017 

Ground-breaking architecture 
that set SOTA on translation 
and later all other NLP tasks 

The key component is the self-
attention mechanism, which 
enables the model to attend to 
different parts of  the input 
sequence to compute 
representation for each position



Before ~2020

http://lucasb.eyer.be/transformer 

http://lucasb.eyer.be/transformer


Now

http://lucasb.eyer.be/transformer



Transformer
A transformer is an encoder-decoder model that uses the attention mechanism 

Encoder encodes the input sequence and passes it to the decoder 

The decoder decodes a representation for a relevant task 



Transformer

https://jalammar.github.io/illustrated-transformer

https://jalammar.github.io/illustrated-transformer


Inner workings of  the Encoder
Begin by taking a word embedding for each input word 

The embedding only enters in the bottom-most encoder 

Each encoder receives a list of  vectors 

In the bottom encoder these are the word embeddings 

But in other encoders, it is the output of  the encoder that’s directly below 

The size of  this list is a hyperparameter we can set – you can think of  this as 
the length of  the longest sentence in our training dataset



Inner workings of  the Encoder
The word in each position flows through its own path in the encoder 

There are dependencies between these paths in the self-attention 
layer 



Key components: Attention
The same word can be used with different meanings 

Attention is a very useful technique that help LMs understand the 
context. Consider the following two sentences:  

	 Sentence 1: The bank of  the river 

	 Sentence 2: Money in the bank 

The word ‘bank’ appears in both, but with different definitions. 

In sentence 1, we are referring to the land at the side of  the river, 
and in the second one to the institution that holds money. 

The computer has no idea of  this, so we need to somehow inject 
that knowledge into it



Key components: Attention
What can help us? Well, it seems that the other words in the 
sentence can come to our rescue.  

For the first sentence, the words ‘the’, and ‘of’ do us no good.  

But the word ‘river’ is the one that is letting us know that 
we’re talking about the land at the side of  the river.  

Similarly, in sentence 2, the word ‘money’ is the one that is 
helping us understand that the word ‘bank’ is now referring 
to the institution that holds money. 



Key components: Attention
Attention moves the words in a sentence closer in the word embeddings 

The word “bank” in the sentence “Money in the bank” will be moved 
closer to the word “money”.  

Equivalently, in the sentence “The bank of  the river”, the word “bank” will 
be moved closer to the word “river”.  

That way, the modified word “bank” vector in each of  the two sentences 
will carry some of  the information of  the neighboring words, adding 
context to it. 



Key components: Attention
The attention step used in transformer models is actually 
much more powerful 

Self  attention: allows the model to look at other words in the 
input sequence to obtain a better contextualized encoding for 
each word  

This essentially bakes in the “understanding” of  other 
relevant words into the one we’re currently processing 

Multi-head attention: several different embeddings are used 
to modify the vectors and add context to them 



Self  attention
1. Create three vectors corresponding to each of  the encoder’s 
input vectors 

For each word, we create a Query, a Key, and a Value vector, 
by multiplying the embedding by three matrices that we 
train during this training process 



Self  attention
2. Calculate the attention score, which determines how much we 
should focus on the other words in the input sentence as we 
encode this word 

scores each word in the input sentence against all other words 

calculated by taking the dot product of  the query vector with 
the key vector of  the respective words we’re scoring 



Self  attention
3. Divide the scores by 8 (sqrt of  dimension, this is just a 
hyperparameter), then pass them to the Softmax 



Self  attention
4. Multiply value vectors of  all words by the Softmax score 

The intuition is to keep intact the values of  the word(s) we 
want to focus on and drown-out irrelevant words 

Sum up the weighted value vectors 

Obtain the output of  the self-
attention layer at this position (for 
the first word) 

The resulting vector is sent to the 
feed-forward neural network. 



Efficient computation in matrix terms

Calculate the Query, Key, 
and Value “matrices” for the 
entire context, by packing 
our embeddings into a 
matrix X and multiplying it 
by the weight matrices



Efficient computation in matrix terms

Outputs of  the self-attention layer: 



A few more ornaments: (a) Multiple heads



A few more ornaments: (a) Multiple heads

We end up with multiple different Z matrices  



A few more ornaments: (a) Multiple heads
Concatenate Z matrices and then multiply with an additional 
weight matrix



A few more ornaments: (a) Multiple heads
Putting all together:



A few more ornaments: (b) Positional encodings
So far, we have no way to account for the order of  the words in the input sequence.  

To address this, we add a vector corresponding to each input position which helps it 
determine the position of  each word.  

Positional encodings can be fixed (following a specific pattern) or may be learnt  



A few add-ons to stabilize training of  deeper networks: Each sub-
layer (self-attention, ffnn) in each encoder has a residual connection 
around it, and is followed by a layer-normalization step

A few more ornaments: (c) Residuals



The Encoder-Decoder in synch
The decoder is very similar. But it must look at the input representations 

Output of  the top encoder is transformed into a set of  key and value attention vectors. 

These are used by each decoder in a “encoder-decoder attention” layer (also called 
cross-attention) which helps the decoder focus on appropriate places in the input 
sequence



The Encoder-Decoder in synch
In the decoder, at test time, the output is generated token by token 
as the output of  each step is fed to the bottom decoder in the next 
time step.



Masking
In the decoder, the self-attention layer is only allowed to attend to earlier 
positions in the output sequence. Otherwise, we’d be cheating! 

This is done by masking future positions (setting the dot product score to 
-inf) before the Softmax step in the self-attention calculation. 



Transformer: a summary
The last step: a softmax layer turns scores into probabilities 

Repeat:  input the text “Write a story. Once” into the model, and most likely, the 
output will be “upon” 

Repeating this step again and again, the transformer will end up writing a story, 
such as “Once upon a time, there was a …”.



Transformer: a summary
Tokenizer: Turns words into tokens  

Embedding: Turns tokens into numbers (vectors)  

Positional encoding: Adds order to the words in the text 

Transformer block: Guesses the next word. It is formed by an attention 
block and a feedforward block 

Attention: Adds context to the text 

Feedforward: Is a block in the transformer neural network, which guesses 
the next word 

Softmax: Turns the scores into probabilities in order to sample the next word



Transformers are not always better than RNNs by themselves 

However, what has made Transformers popular is that they can 
be combined with the idea of  transfer learning 

Transformers have become the go-to model for building large 
pretrained language models which can be adapted for several 
tasks 

The idea of  transfer learning is to use the knowledge gained 
while solving one problem and applying it to a different but 
related problem

Key components: Transfer learning



For example, knowledge gained while learning to recognize cars could be 
applied when trying to recognize trucks 

 

In fact, if  we have a large dataset of  cars, we can pretrain a model on this 
dataset, and may be able to do well on recognizing trucks by finetuning the 
model on a small dataset of  trucks 

In natural language processing (NLP), we can train a NN language model 
(on vast text corpora), and then use it to transfer that knowledge to any 
target task in NLP we care about

Key components: Transfer learning



Notable LLMs



Lab 7 - preview

Google account to 
use Google Colab 

Save a copy of  this 
Colab notebook file 
into your google 
drive: File -> Save a 
copy in Drive 

Work on the saved 
copy

https://colab.research.google.com
https://colab.research.google.com/drive/1Tb46AR_3-9xL2pAV2KqONxaQ6kWGsW8K?usp=sharing


Lab 7 - preview

Notebook setting: Runtime -> Change runtime type -> Hardware 
accelerator: GPU 



Lab 7 - preview
Click on connect, it will connect to a hosted runtime on cloud by default 

 

Now, you are ready to execute each coding cell sequentially by clicking 
on the Run cell button 


